Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ageing Res Rev ; 93: 102162, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070831

RESUMEN

Unhealthy lifestyle choices, poor diet, and aging can have negative influences on cognition, gradually increasing the risk for mild cognitive impairment (MCI) and the continuum comprising early dementia. Aging is the greatest risk factor for age-related dementias such as Alzheimer's disease, and the aging process is known to be influenced by life events that can positively or negatively affect age-related diseases. Remarkably, life experiences that make the brain vulnerable to dementia, such as seizure episodes, neurotoxin exposures, metabolic disorders, and trauma-inducing events (e.g. traumatic injuries or mild neurotrauma from a fall or blast exposure), have been associated with negative effects on proteostasis and synaptic integrity. Functional compromise of the autophagy-lysosomal pathway, a major contributor to proteostasis, has been implicated in Alzheimer's disease, Parkinson's disease, obesity-related pathology, Huntington's disease, as well as in synaptic degeneration which is the best correlate of cognitive decline. Correspondingly, pharmacological and non-pharmacological strategies that positively modulate lysosomal proteases are recognized as synaptoprotective through degradative clearance of pathogenic proteins. Here, we discuss life-associated vulnerabilities that influence key hallmarks of brain aging and the increased burden of age-related dementias. Additionally, we discuss exercise and diet among the lifestyle strategies that regulate proteostasis as well as synaptic integrity, leading to evident prevention of cognitive deficits during brain aging in pre-clinical models.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Deficiencias en la Proteostasis , Humanos , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/complicaciones , Proteostasis , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/metabolismo , Estilo de Vida
2.
J Cell Mol Med ; 25(18): 9011-9027, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34414662

RESUMEN

Excitotoxic events underlying ischaemic and traumatic brain injuries activate degenerative and protective pathways, particularly in the hippocampus. To understand opposing pathways that determine the brain's response to excitotoxicity, we used hippocampal explants, thereby eliminating systemic variables during a precise protocol of excitatory stimulation. N-methyl-d-aspartate (NMDA) was applied for 20 min and total RNA isolated one and 24 h later for neurobiology-specific microarrays. Distinct groups of genes exhibited early vs. delayed induction, with 63 genes exclusively reduced 24-h post-insult. Egr-1 and NOR-1 displayed biphasic transcriptional modulation: early induction followed by delayed suppression. Opposing events of NMDA-induced genes linked to pathogenesis and cell survival constituted the early expression signature. Delayed degenerative indicators (up-regulated pathogenic genes, down-regulated pro-survival genes) and opposing compensatory responses (down-regulated pathogenic genes, up-regulated pro-survival genes) generated networks with temporal gene profiles mirroring coexpression network clustering. We then used the expression profiles to test whether NF-κB, a potent transcription factor implicated in both degenerative and protective pathways, is involved in the opposing responses. The NF-κB inhibitor MG-132 indeed altered NMDA-mediated transcriptional changes, revealing components of opposing expression signatures that converge on the single response element. Overall, this study identified counteracting avenues among the distinct responses to excitotoxicity, thereby suggesting multi-target treatment strategies and implications for predictive medicine.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , N-Metilaspartato , FN-kappa B/metabolismo , Sustancias Protectoras , Animales , N-Metilaspartato/administración & dosificación , N-Metilaspartato/farmacología , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología , Ratas , Ratas Sprague-Dawley
3.
Brain Pathol ; 31(3): e12936, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33629462

RESUMEN

Explosive shockwaves, and other types of blast exposures, are linked to injuries commonly associated with military service and to an increased risk for the onset of dementia. Neurological complications following a blast injury, including depression, anxiety, and memory problems, often persist even when brain damage is undetectable. Here, hippocampal explants were exposed to the explosive 1,3,5-trinitro-1,3,5-triazinane (RDX) to identify indicators of blast-induced changes within important neuronal circuitries. Highly controlled detonations of small, 1.7-gram RDX spherical charges reduced synaptic markers known to be downregulated in cognitive disorders, but without causing overt neuronal loss or astroglial responses. In the absence of neuromorphological alterations, levels of synaptophysin, GluA1, and synapsin IIb were significantly diminished within 24 hr, and these synaptic components exhibited progressive reductions following blast exposure as compared to their stable maintenance in control explants. In contrast, labeling of the synapsin IIa isoform remained unaltered, while neuropilar staining of other markers decreased, including synapsin IIb and neural cell adhesion molecule (NCAM) isoforms, along with evidence of NCAM proteolytic breakdown. NCAM180 displayed a distinct decline after the RDX blasts, whereas NCAM140 and NCAM120 exhibited smaller or no deterioration, respectively. Interestingly, the extent of synaptic marker reduction correlated with AT8-positive tau levels, with tau pathology stochastically found in CA1 neurons and their dendrites. The decline in synaptic components was also reflected in the size of evoked postsynaptic currents recorded from CA1 pyramidals, which exhibited a severe and selective reduction. The identified indicators of blast-mediated synaptopathy point to the need for early biomarkers of explosives altering synaptic integrity with links to dementia risk, to advance strategies for both cognitive health and therapeutic monitoring.


Asunto(s)
Traumatismos por Explosión/patología , Demencia/patología , Hipocampo/patología , Personal Militar/psicología , Astrocitos/patología , Traumatismos por Explosión/metabolismo , Traumatismos por Explosión/psicología , Lesiones Encefálicas/patología , Trastornos del Conocimiento/patología , Humanos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/patología
4.
Sci Rep ; 10(1): 13688, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792571

RESUMEN

Patients with frontotemporal dementia (FTD) resulting from granulin (GRN) haploinsufficiency have reduced levels of progranulin and exhibit dysregulation in inflammatory and lysosomal networks. Microglia produce high levels of progranulin, and reduction of progranulin in microglia alone is sufficient to recapitulate inflammation, lysosomal dysfunction, and hyperproliferation in a cell-autonomous manner. Therefore, targeting microglial dysfunction caused by progranulin insufficiency represents a potential therapeutic strategy to manage neurodegeneration in FTD. Limitations of current progranulin-enhancing strategies necessitate the discovery of new targets. To identify compounds that can reverse microglial defects in Grn-deficient mouse microglia, we performed a compound screen coupled with high throughput sequencing to assess key transcriptional changes in inflammatory and lysosomal pathways. Positive hits from this initial screen were then further narrowed down based on their ability to rescue cathepsin activity, a critical biochemical readout of lysosomal capacity. The screen identified nor-binaltorphimine dihydrochloride (nor-BNI) and dibutyryl-cAMP, sodium salt (DB-cAMP) as two phenotypic modulators of progranulin deficiency. In addition, nor-BNI and DB-cAMP also rescued cell cycle abnormalities in progranulin-deficient cells. These data highlight the potential of a transcription-based platform for drug screening, and advance two novel lead compounds for FTD.


Asunto(s)
Bucladesina/farmacología , Proteasas de Cisteína/metabolismo , Demencia Frontotemporal/genética , Perfilación de la Expresión Génica/métodos , Microglía/citología , Naltrexona/análogos & derivados , Progranulinas/deficiencia , Animales , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Modelos Biológicos , Naltrexona/farmacología , Análisis de Secuencia de ARN , Bibliotecas de Moléculas Pequeñas/farmacología
5.
Int Rev Neurobiol ; 154: 303-324, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32739009

RESUMEN

The endosomal-lysosomal pathways and related autophagic processes are responsible for proteostasis, involving complexes between lysosomes and autophagosomes. Lysosomes are a key component of homeostasis, involved in cell signaling, metabolism, and quality control, and they experience functional compromise in metabolic diseases, aging, and neurodegenerative diseases. Many genetic mutations and risk factor genes associated with proteinopathies, as well as with metabolic diseases like diabetes, negatively influence endocytic trafficking and autophagic clearance. In contrast, health-improving exercise induces autophagy-lysosomal degradation, perhaps promoting efficient digestion of injured organelles so that undamaged organelles ensure cellular healthiness. Reductions in lysosomal hydrolases are implicated in Alzheimer's, Parkinson's, and lysosomal storage diseases, as well as obesity-related pathology, and members of the cathepsin enzyme family are involved in clearing both Aß42 and α-synuclein. Upregulation of cathepsin hydrolases improves synaptic and memory functions in models of dementia and in exercising humans, thus identifying lysosomal-related systems as vital for healthy cognitive aging.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Diabetes Mellitus/metabolismo , Ejercicio Físico , Lisosomas/metabolismo , Enfermedades Metabólicas/metabolismo , Redes y Vías Metabólicas , Obesidad/metabolismo , Proteostasis , Sinucleinopatías/metabolismo , Animales , Ejercicio Físico/fisiología , Humanos , Redes y Vías Metabólicas/fisiología , Proteostasis/fisiología
6.
Bioorg Med Chem ; 27(23): 115096, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31629610

RESUMEN

FAAH inhibitors offer safety advantages by augmenting the anandamide levels "on demand" to promote neuroprotective mechanisms without the adverse psychotropic effects usually seen with direct and chronic activation of the CB1 receptor. FAAH is an enzyme implicated in the hydrolysis of the endocannabinoid N-arachidonoylethanolamine (AEA), which is a partial agonist of the CB1 receptor. Herein, we report the discovery of a new series of highly potent and selective carbamate FAAH inhibitors and their evaluation for neuroprotection. The new inhibitors showed potent nanomolar inhibitory activity against human recombinant and purified rat FAAH, were selective (>1000-fold) against serine hydrolases MGL and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Evaluation of FAAH inhibitors 9 and 31 using the in vitro competitive activity-based protein profiling (ABPP) assay confirmed that both inhibitors were highly selective for FAAH in the brain, since none of the other FP-reactive serine hydrolases in this tissue were inhibited by these agents. Our design strategy followed a traditional SAR approach and was supported by molecular modeling studies based on known FAAH cocrystal structures. To rationally design new molecules that are irreversibly bound to FAAH, we have constructed "precovalent" FAAH-ligand complexes to identify good binding geometries of the ligands within the binding pocket of FAAH and then calculated covalent docking poses to select compounds for synthesis. FAAH inhibitors 9 and 31 were evaluated for neuroprotection in rat hippocampal slice cultures. In the brain tissue, both inhibitors displayed protection against synaptic deterioration produced by kainic acid-induced excitotoxicity. Thus, the resultant compounds produced through rational design are providing early leads for developing therapeutics against seizure-related damage associated with a variety of disorders.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Fármacos Neuroprotectores/farmacología , Piperazina/farmacología , Piperidinas/farmacología , Amidohidrolasas/metabolismo , Animales , Diseño de Fármacos , Inhibidores Enzimáticos/química , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/química , Piperazina/análogos & derivados , Piperidinas/química , Ratas
7.
Int J Mol Sci ; 20(18)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31505809

RESUMEN

Many neurodegenerative disorders have lysosomal impediments, and the list of proposed treatments targeting lysosomes is growing. We investigated the role of lysosomes in Alzheimer's disease (AD) and other age-related disorders, as well as in a strategy to compensate for lysosomal disturbances. Comprehensive immunostaining was used to analyze brains from wild-type mice vs. amyloid precursor protein/presenilin-1 (APP/PS1) mice that express mutant proteins linked to familial AD. Also, lysosomal modulation was evaluated for inducing synaptic and behavioral improvements in transgenic models of AD and Parkinson's disease, and in models of mild cognitive impairment (MCI). Amyloid plaques were surrounded by swollen organelles positive for the lysosome-associated membrane protein 1 (LAMP1) in the APP/PS1 cortex and hippocampus, regions with robust synaptic deterioration. Within neurons, lysosomes contain the amyloid ß 42 (Aß42) degradation product Aß38, and this indicator of Aß42 detoxification was augmented by Z-Phe-Ala-diazomethylketone (PADK; also known as ZFAD) as it enhanced the lysosomal hydrolase cathepsin B (CatB). PADK promoted Aß42 colocalization with CatB in lysosomes that formed clusters in neurons, while reducing Aß deposits as well. PADK also reduced amyloidogenic peptides and α-synuclein in correspondence with restored synaptic markers, and both synaptic and cognitive measures were improved in the APP/PS1 and MCI models. These findings indicate that lysosomal perturbation contributes to synaptic and cognitive decay, whereas safely enhancing protein clearance through modulated CatB ameliorates the compromised synapses and cognition, thus supporting early CatB upregulation as a disease-modifying therapy that may also slow the MCI to dementia continuum.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/patología , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Humanos , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/genética , Lisosomas/patología , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Sinapsis/metabolismo , Sinapsis/patología
8.
JCI Insight ; 4(12)2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31217360

RESUMEN

Engulfment and cell motility protein 1 (ELMO1) is part of a guanine nucleotide exchange factor for Ras-related C3 botulinum toxin substrate (Rac), and ELMO1 polymorphisms were identified to be associated with diabetic nephropathy in genome-wide association studies. We generated a set of Akita Ins2C96Y diabetic mice having 5 graded cardiac mRNA levels of ELMO1 from 30% to 200% of normal and found that severe dilated cardiomyopathy develops in ELMO1-hypermorphic mice independent of renal function at age 16 weeks, whereas ELMO1-hypomorphic mice were completely protected. As ELMO1 expression increased, reactive oxygen species indicators, dissociation of the intercalated disc, mitochondrial fragmentation/dysfunction, cleaved caspase-3 levels, and actin polymerization increased in hearts from Akita mice. Cardiomyocyte-specific overexpression in otherwise ELMO1-hypomorphic Akita mice was sufficient to promote cardiomyopathy. Cardiac Rac1 activity was positively correlated with the ELMO1 levels, and oral administration of a pan-Rac inhibitor, EHT1864, partially mitigated cardiomyopathy of the ELMO1 hypermorphs. Disrupting Nox4, a Rac-independent NADPH oxidase, also partially mitigated it. In contrast, a pan-NADPH oxidase inhibitor, VAS3947, markedly prevented cardiomyopathy. Our data demonstrate that in diabetes mellitus ELMO1 is the "rate-limiting" factor of reactive oxygen species production via both Rac-dependent and Rac-independent NADPH oxidases, which in turn trigger cellular signaling cascades toward cardiomyopathy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomiopatías Diabéticas/etiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Movimiento Celular , Conexina 43/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Femenino , Corazón/fisiopatología , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , NADPH Oxidasa 4/metabolismo
9.
Sci Rep ; 9(1): 6532, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31024077

RESUMEN

Organophosphates account for many of the world's deadliest poisons. They inhibit acetylcholinesterase causing cholinergic crises that lead to seizures and death, while survivors commonly experience long-term neurological problems. Here, we treated brain explants with the organophosphate compound paraoxon and uncovered a unique mechanism of neurotoxicity. Paraoxon-exposed hippocampal slice cultures exhibited progressive declines in synaptophysin, synapsin II, and PSD-95, whereas reduction in GluR1 was slower and NeuN and Nissl staining showed no indications of neuronal damage. The distinctive synaptotoxicity was observed in dendritic zones of CA1 and dentate gyrus. Interestingly, declines in synapsin II dendritic labeling correlated with increased staining for ß1 integrin, a component of adhesion receptors that regulate synapse maintenance and plasticity. The paraoxon-induced ß1 integrin response was targeted to synapses, and the two-fold increase in ß1 integrin was selective as other synaptic adhesion molecules were unchanged. Additionally, ß1 integrin-cofilin signaling was triggered by the exposure and correlations were found between the extent of synaptic decline and the level of ß1 integrin responses. These findings identified organophosphate-mediated early and lasting synaptotoxicity which can explain delayed neurological dysfunction later in life. They also suggest that the interplay between synaptotoxic events and compensatory adhesion responses influences neuronal fate in exposed individuals.


Asunto(s)
Dendritas/metabolismo , Exposición a Riesgos Ambientales , Hipocampo/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Organofosfatos/toxicidad , Transducción de Señal , Sinapsis/patología , Animales , Antígenos Nucleares/metabolismo , Inhibidores de la Colinesterasa/farmacología , Dendritas/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/efectos de los fármacos , Integrina beta1/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Paraoxon/toxicidad , Ratas , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsinas/metabolismo
10.
Mil Med ; 183(suppl_1): 269-275, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635567

RESUMEN

Threshold shock-impulse levels required to induce cellular injury and cumulative effects upon single and/or multiple exposures are not well characterized. Currently, there are few in vitro experimental models with blast pressure waves generated by using real explosives in the laboratory for investigating the effects of primary blast-induced traumatic brain injury. An in vitro indoor experimental platform is developed using real military explosive charges to accurately represent battlefield blast exposure and to probe the effects of primary explosive blast on dissociated neurons and tissue slices. Preliminary results indicate that physical insults altered membrane permeability, impacted cellular viability, created axonal beadings, and led to synaptic protein loss in hippocampal slice cultures. Injuries from blast under the conditions that were examined did not appear to cause immediate or sustained damage to the cells. Three consecutive primary blasts failed to disrupt the overall cellular integrity in the hippocampal slice cultures and produced a unique type of pathology comprised with distinct reduction in synaptic proteins before cellular deterioration set in. These observed changes might add to the challenges in regard to enhancing our understanding of the complex biochemical and molecular mechanisms caused by primary blast-induced injury.


Asunto(s)
Explosiones , Hipocampo/patología , Neuronas/patología , Sonido/efectos adversos , Animales , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Neuronas/citología , Células PC12/patología , Ratas , Ratas Sprague-Dawley/anomalías , Ratas Sprague-Dawley/lesiones , Triazinas/efectos adversos
11.
Cell Death Dis ; 9(3): 297, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463792

RESUMEN

Despite the characteristic etiologies and phenotypes, different brain disorders rely on common pathogenic events. Glutamate-induced neurotoxicity is a pathogenic event shared by different brain disorders. Another event occurring in different brain pathological conditions is the increase of the extracellular ATP levels, which is now recognized as a danger and harmful signal in the brain, as heralded by the ability of P2 receptors (P2Rs) to affect a wide range of brain disorders. Yet, how ATP and P2R contribute to neurodegeneration remains poorly defined. For that purpose, we now examined the contribution of extracellular ATP and P2Rs to glutamate-induced neurodegeneration. We found both in vitro and in vivo that ATP/ADP through the activation of P2Y1R contributes to glutamate-induced neuronal death in the rat hippocampus. We found in cultured rat hippocampal neurons that the exposure to glutamate (100 µM) for 30 min triggers a sustained increase of extracellular ATP levels, which contributes to NMDA receptor (NMDAR)-mediated hippocampal neuronal death through the activation of P2Y1R. We also determined that P2Y1R is involved in excitotoxicity in vivo as the blockade of P2Y1R significantly attenuated rat hippocampal neuronal death upon the systemic administration of kainic acid or upon the intrahippocampal injection of quinolinic acid. This contribution of P2Y1R fades with increasing intensity of excitotoxic conditions, which indicates that P2Y1R is not contributing directly to neurodegeneration, rather behaving as a catalyst decreasing the threshold from which glutamate becomes neurotoxic. Moreover, we unraveled that such excitotoxicity process began with an early synaptotoxicity that was also prevented/attenuated by the antagonism of P2Y1R, both in vitro and in vivo. This should rely on the observed glutamate-induced calpain-mediated axonal cytoskeleton damage, most likely favored by a P2Y1R-driven increase of NMDAR-mediated Ca2+ entry selectively in axons. This may constitute a degenerative mechanism shared by different brain diseases, particularly relevant at initial pathogenic stages.


Asunto(s)
Ácido Glutámico/toxicidad , Enfermedades Neurodegenerativas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Muerte Celular , Femenino , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Masculino , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores Purinérgicos P2Y1/genética
12.
Curr Opin Neurobiol ; 48: 52-58, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29028540

RESUMEN

Endo-lysosomal pathways are essential in maintaining protein homeostasis in the cell. Numerous genes in the endo-lysosomal pathways have been found to associate with neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and frontotemporal dementia (FTD). Mutations of these genes lead to dysfunction in multiple steps of the endo-lysosomal network: autophagy, endocytic trafficking and lysosomal degradation, resulting in accumulation of pathogenic proteins. Although the exact pathogenic mechanism varies for different disease-associated genes, dysfunction of the endo-lysosomal pathways represents a converging mechanism shared by these diseases. Therefore, strategies that correct or compensate for endo-lysosomal dysfunction may be promising therapeutic approaches to treat neurodegenerative diseases.


Asunto(s)
Lisosomas/genética , Lisosomas/metabolismo , Enfermedades Neurodegenerativas/genética , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Transducción de Señal/fisiología
13.
Ageing Res Rev ; 42: 40-55, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29248758

RESUMEN

BACKGROUND: Ageing is a highly complex process marked by a temporal cascade of events, which promote alterations in the normal functioning of an individual organism. The triggers of normal brain ageing are not well understood, even less so the factors which initiate and steer the neuronal degeneration, which underpin disorders such as dementia. A wealth of data on how nutrients and diets may support cognitive function and preserve brain health are available, yet the molecular mechanisms underlying their biological action in both normal ageing, age-related cognitive decline, and in the development of neurodegenerative disorders have not been clearly elucidated. OBJECTIVES: This review aims to summarise the current state of knowledge of vulnerabilities that predispose towards dysfunctional brain ageing, highlight potential protective mechanisms, and discuss dietary interventions that may be used as therapies. A special focus of this paper is on the impact of nutrition on neuroprotection and the underlying molecular mechanisms, and this focus reflects the discussions held during the 2nd workshop 'Nutrition for the Ageing Brain: Functional Aspects and Mechanisms' in Copenhagen in June 2016. The present review is the most recent in a series produced by the Nutrition and Mental Performance Task Force under the auspice of the International Life Sciences Institute Europe (ILSI Europe). CONCLUSION: Coupling studies of cognitive ageing with studies investigating the effect of nutrition and dietary interventions as strategies targeting specific mechanisms, such as neurogenesis, protein clearance, inflammation, and non-coding and microRNAs is of high value. Future research on the impact of nutrition on cognitive ageing will need to adopt a longitudinal approach and multimodal nutritional interventions will likely need to be imposed in early-life to observe significant impact in older age.


Asunto(s)
Envejecimiento Cognitivo/fisiología , Envejecimiento Cognitivo/psicología , Dietoterapia/métodos , Estado Nutricional/fisiología , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Animales , Encéfalo/metabolismo , Cognición/fisiología , Trastornos del Conocimiento/dietoterapia , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/psicología , Dietoterapia/tendencias , Humanos , Nutrientes/administración & dosificación , Nutrientes/metabolismo , Obesidad/dietoterapia , Obesidad/metabolismo , Obesidad/psicología
14.
PLoS One ; 12(8): e0182895, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28797057

RESUMEN

Impaired protein clearance likely increases the risk of protein accumulation disorders including Alzheimer's disease (AD). Protein degradation through the proteasome pathway decreases with age and in AD brains, and the Aß42 peptide has been shown to impair proteasome function in cultured cells and in a cell-free model. Here, Aß42 was studied in brain tissue to measure changes in protein clearance pathways and related secondary pathology. Oligomerized Aß42 (0.5-1.5 µM) reduced proteasome activity by 62% in hippocampal slice cultures over a 4-6-day period, corresponding with increased tau phosphorylation and reduced synaptophysin levels. Interestingly, the decrease in proteasome activity was associated with a delayed inverse effect, >2-fold increase, regarding lysosomal cathepsin B (CatB) activity. The CatB enhancement did not correspond with the Aß42-mediated phospho-tau alterations since the latter occurred prior to the CatB response. Hippocampal slices treated with the proteasome inhibitor lactacystin also exhibited an inverse effect on CatB activity with respect to diminished proteasome function. Lactacystin caused earlier CatB enhancement than Aß42, and no correspondence was evident between up-regulated CatB levels and the delayed synaptic pathology indicated by the loss of pre- and postsynaptic markers. Contrasting the inverse effects on the proteasomal and lysosomal pathways by Aß42 and lactacystin, such were not found when CatB activity was up-regulated two-fold with Z-Phe-Ala-diazomethylketone (PADK). Instead of an inverse decline, proteasome function was increased marginally in PADK-treated hippocampal slices. Unexpectedly, the proteasomal augmentation was significantly pronounced in Aß42-compromised slices, while absent in lactacystin-treated tissue, resulting in >2-fold improvement for nearly complete recovery of proteasome function by the CatB-enhancing compound. The PADK treatment also reduced Aß42-mediated tau phosphorylation and synaptic marker declines, corresponding with the positive modulation of both proteasome activity and the lysosomal CatB enzyme. These findings indicate that proteasomal stress contributes to AD-type pathogenesis and that governing such pathology occurs through crosstalk between the two protein clearance pathways.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Catepsina B/metabolismo , Hipocampo/metabolismo , Lisosomas/metabolismo , Fragmentos de Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas tau/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Animales , Inhibidores de Cisteína Proteinasa/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sinaptofisina/metabolismo
15.
J Mol Neurosci ; 63(1): 115-122, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28803438

RESUMEN

The anticholinesterase paraoxon (Pxn) is related to military nerve agents that increase acetylcholine levels, trigger seizures, and cause excitotoxic damage in the brain. In rat hippocampal slice cultures, high-dose Pxn was applied resulting in a presynaptic vulnerability evidenced by a 64% reduction in synapsin IIb (syn IIb) levels, whereas the postsynaptic protein GluR1 was unchanged. Other signs of Pxn-induced cytotoxicity include the oxidative stress-related production of stable 4-hydroxynonenal (4-HNE)-protein adducts. Next, the Pxn toxicity was tested for protective effects by the fatty acid amide hydrolase (FAAH) inhibitor AM5206, a compound linked to enhanced repair signaling through the endocannabinoid pathway. The Pxn-mediated declines in syn IIb and synaptophysin were prevented by AM5206 in the slice cultures. To test if the protective results in the slice model translate to an in vivo model, AM5206 was injected i.p. into rats, followed immediately by subcutaneous Pxn administration. The toxin caused a pathogenic cascade initiated by seizure events, leading to presynaptic marker decline and oxidative changes in the hippocampus and frontal cortex. AM5206 exhibited protective effects including the reduction of seizure severity by 86%, and improving balance and coordination measured 24 h post-insult. As observed in hippocampal slices, the FAAH inhibitor also prevented the Pxn-induced loss of syn IIb in vivo. In addition, the AM5206 compound reduced the 4-HNE modifications of proteins and the ß1 integrin activation events both in vitro and in vivo. These results indicate that Pxn exposure produces oxidative and synaptic toxicity that leads to the behavioral deficits manifested by the neurotoxin. In contrast, the presence of FAAH inhibitor AM5206 offsets the pathogenic cascade elicited by the Pxn anticholinesterase.


Asunto(s)
Endocannabinoides/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Paraoxon/toxicidad , Éteres Fenílicos/uso terapéutico , Convulsiones/tratamiento farmacológico , Amidohidrolasas/antagonistas & inhibidores , Animales , Inhibidores Enzimáticos/farmacología , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Insecticidas/toxicidad , Masculino , Fármacos Neuroprotectores/farmacología , Éteres Fenílicos/farmacología , Ratas , Ratas Sprague-Dawley , Convulsiones/etiología , Sinaptofisina/metabolismo
16.
J Nat Sci ; 3(7)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28824962

RESUMEN

Sadly many military veterans, who left home to serve their country honorably, return from service with permanent life-changing injuries. It is easy to remember our debt to those who have incurred such visible injuries, and all too easy to forget the invisible wounds that afflict so many of our military servicemen and women. Brain injuries can be invisible during initial medical evaluations and are often caused by military explosives that create blast shockwaves of varying intensity. One of the most common types of traumatic brain injury (TBI) linked to military service is blast-induced neurotrauma. To better understand this type of injury, a recently published study subjected rat brain slice cultures to detonations of RDX military explosives, resulting in reduced levels of specific synaptic markers. Such alterations have in fact been linked to depressive behavior, anxiety, and cognitive rigidity, and the blast-induced synaptic modifications may underlie the behavioral changes in those TBI sufferers who do not exhibit measurable brain damage. This research has the potential to improve diagnoses by identifying indicators of synapse integrity for the assessment of subtle synaptopathogenesis linked to blast-induced neurotrauma.

17.
Eur Sci J ; 13: 38-59, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29805718

RESUMEN

Cysteine protease inhibitors have long been part of drug discovery programs for Alzheimer's disease (AD), traumatic brain injury (TBI), and other disorders. Select inhibitors reduce accumulating proteins and AD pathology in mouse models. One such compound, Z-Phe-Aladiazomethylketone (PADK), exhibits a very weak IC50 (9-11 µM) towards cathepsin B (CatB), but curiously PADK causes marked up-regulation of the Aß-degrading CatB and improves spatial memory. Potential therapeutic and weak inhibitor E64d (14 µM IC50) also up-regulates CatB. PADK and E64d were compared regarding the blockage of calcium-induced cytoskeletal deterioration in brain samples, monitoring the 150-kDa spectrin breakdown product (SBDP) known to be produced by calpain. PADK had little to no effect on SBDP production at 10-100 µM. In contrast, E64d caused a dose-dependent decline in SBDP levels with an IC50 of 3-6 µM, closely matching its reported potency for inhibiting µ-calpain. Calpain also cleaves the cytoskeletal organizing protein gephyrin, producing 49-kDa (GnBDP49) and 18-kDa (GnBDP18) breakdown products. PADK had no apparent effect on calcium-induced gephyrin fragments whereas E64d blocked their production. E64d also protected the parent gephyrin in correspondence with reduced BDP levels. The findings of this study indicate that PADK's positive and selective effects on CatB are consistent with human studies showing exercise elevates CatB and such elevation correlates with improved memory. On the other hand, E64d exhibits both marginal CatB enhancement and potent calpain inhibition. This dual effect may be beneficial for treating AD. Alternatively, the potent action on calpain-related pathology may explain E64d's protection in AD and TBI models.

18.
Eur Sci J ; 13: 29-37, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29805717

RESUMEN

The anticholinesterase paraoxon (Pxn) is an organophosphate (OP) and the active metabolite of the insecticide parathion. It potently inhibits the enzyme acetylcholinesterase and leads to enhanced glutamate release, diminished GABA uptake, oxidative damage, and neurodegeneration. The resulting increased levels of acetylcholine can trigger seizures and cause neuronal and excitotoxic damage in the brain. The brain susceptibility related to anticholinesterase toxins extends beyond potential brain damage and death from toxic levels of the agent. Asymptomatic low-level exposure to such toxins can also leave the brain vulnerable or even cause it to exhibit neurological problems later in life. The actions of Pxn and similar neurotoxins have been studied in order to examine the events associated with anticholinesterase toxicity in the brain. A recent study demonstrated that Pxn exposure initiates a pathogenic cascade involving seizure events and subsequent signs of damage including unique presynaptic vulnerability and associated behavioral deficits. In addition, Pxn-mediated synaptotoxicity is also associated with enhanced production of oxidative stress as well as integrin adhesion responses. These findings provide a better understanding of the molecular events involved in Pxn toxicity.

19.
Exp Neurol ; 286: 107-115, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27720798

RESUMEN

Explosives create shockwaves that cause blast-induced neurotrauma, one of the most common types of traumatic brain injury (TBI) linked to military service. Blast-induced TBIs are often associated with reduced cognitive and behavioral functions due to a variety of factors. To study the direct effects of military explosive blasts on brain tissue, we removed systemic factors by utilizing rat hippocampal slice cultures. The long-term slice cultures were briefly sealed air-tight in serum-free medium, lowered into a 37°C water-filled tank, and small 1.7-gram assemblies of cyclotrimethylene trinitramine (RDX) were detonated 15cm outside the tank, creating a distinct shockwave recorded at the culture plate position. Compared to control mock-treated groups of slices that received equal submerge time, 1-3 blast impacts caused a dose-dependent reduction in the AMPA receptor subunit GluR1. While only a small reduction was found in hippocampal slices exposed to a single RDX blast and harvested 1-2days later, slices that received two consecutive RDX blasts 4min apart exhibited a 26-40% reduction in GluR1, and the receptor subunit was further reduced by 64-72% after three consecutive blasts. Such loss correlated with increased levels of HDAC2, a histone deacetylase implicated in stress-induced reduction of glutamatergic transmission. No evidence of synaptic marker recovery was found at 72h post-blast. The presynaptic marker synaptophysin was found to have similar susceptibility as GluR1 to the multiple explosive detonations. In contrast to the synaptic protein reductions, actin levels were unchanged, spectrin breakdown was not detected, and Fluoro-Jade B staining found no indication of degenerating neurons in slices exposed to three RDX blasts, suggesting that small, sub-lethal explosives are capable of producing selective alterations to synaptic integrity. Together, these results indicate that blast waves from military explosive cause signs of synaptic compromise without producing severe neurodegeneration, perhaps explaining the cognitive and behavioral changes in those blast-induced TBI sufferers that have no detectable neuropathology.


Asunto(s)
Traumatismos por Explosión/patología , Hipocampo/metabolismo , Receptores AMPA/metabolismo , Sinaptofisina/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Traumatismos por Explosión/etiología , Sustancias Explosivas/efectos adversos , Fluoresceínas/farmacocinética , Hipocampo/lesiones , Histona Desacetilasa 2/metabolismo , Técnicas In Vitro , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Teóricos , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Triazinas/efectos adversos
20.
Exp Neurol ; 278: 116-26, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26853136

RESUMEN

In several animal models of motor neuron disease, degeneration begins in the periphery. Clarifying the possible role of Schwann cells remains a priority. We recently showed that terminal Schwann cells (TSCs) exhibit abnormalities in postnatal mice that express mutations of the SOD1 enzyme found in inherited human motor neuron disease. TSC abnormalities appeared before disease-related denervation commenced and the extent of TSC abnormality at P30 correlated with the extent of subsequent denervation. Denervated neuromuscular junctions (NMJs) were also observed that lacked any labeling for TSCs. This suggested that SOD1 TSCs may respond differently than wildtype TSCs to denervation which remain at denervated NMJs for several months. In the present study, the response of SOD1 TSCs to experimental denervation was examined. At P30 and P60, SC-specific S100 labeling was quickly lost from SOD1 NMJs and from preterminal regions. Evidence indicates that this loss eventually becomes complete at most SOD1 NMJs before reinnervation occurs. The loss of labeling was not specific for S100 and did not depend on loss of activity. Although some post-denervation labeling loss occurred at wildtype NMJs, this loss was never complete. Soon after denervation, large cells appeared near SOD1 NMJ bands which colabeled for SC markers as well as for activated caspase-3 suggesting that distal SOD1 SCs may experience cell death following denervation. Denervated SOD1 NMJs viewed 7 days after denervation with the electron microscope confirmed the absence of TSCs overlying endplates. These observations demonstrate that SOD1 TSCs and distal SCs respond abnormally to denervation. This behavior can be expected to hinder reinnervation and raises further questions concerning the ability of SOD1 TSCs to support normal functioning of motor terminals.


Asunto(s)
Modelos Animales de Enfermedad , Regulación de la Expresión Génica/fisiología , Enfermedad de la Neurona Motora/patología , Células de Schwann/patología , Factores de Edad , Animales , Antígenos de Diferenciación/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de la Neurona Motora/genética , Desnervación Muscular/métodos , Mutación/genética , Regeneración Nerviosa/fisiología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Unión Neuromuscular/ultraestructura , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptores Colinérgicos/metabolismo , Proteínas S100/metabolismo , Células de Schwann/metabolismo , Neuropatía Ciática/metabolismo , Neuropatía Ciática/patología , Superóxido Dismutasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA